// Rust-101, Part 08: Associated Types, Modules // ============================================ use std::{cmp,ops}; use part05::BigInt; // So, let us write a function to "add with carry", and give it the appropriate type. Notice Rust's // native support for pairs. fn overflowing_add(a: u64, b: u64, carry: bool) -> (u64, bool) { let sum = a.wrapping_add(b); // If an overflow happened, then the sum will be smaller than *both* summands. Without an // overflow, of course, it will be at least as large as both of them. So, let's just pick one // and check. if sum >= a { // The addition did not overflow.
// **Exercise 08.1**: Write the code to handle adding the carry in this case. unimplemented!() } else { // Otherwise, the addition *did* overflow. It is impossible for the addition of the carry // to overflow again, as we are just adding 0 or 1. unimplemented!() } } // `overflow_add` is a sufficiently intricate function that a test case is justified. // This should also help you to check your solution of the exercise. /*#[test]*/ fn test_overflowing_add() { assert_eq!(overflowing_add(10, 100, false), (110, false)); assert_eq!(overflowing_add(10, 100, true), (111, false)); assert_eq!(overflowing_add(1 << 63, 1 << 63, false), (0, true)); assert_eq!(overflowing_add(1 << 63, 1 << 63, true), (1, true)); assert_eq!(overflowing_add(1 << 63, (1 << 63) -1 , true), (0, true)); } // ## Associated Types impl ops::Add for BigInt { // Here, we choose the result type to be again `BigInt`. type Output = BigInt; // Now we can write the actual function performing the addition. fn add(self, rhs: BigInt) -> Self::Output { // We know that the result will be *at least* as long as the longer of the two operands, // so we can create a vector with sufficient capacity to avoid expensive reallocations. let max_len = cmp::max(self.data.len(), rhs.data.len()); let mut result_vec:Vec = Vec::with_capacity(max_len); let mut carry = false; /* the current carry bit */ for i in 0..max_len { let lhs_val = if i < self.data.len() { self.data[i] } else { 0 }; let rhs_val = if i < rhs.data.len() { rhs.data[i] } else { 0 }; // Compute next digit and carry. Then, store the digit for the result, and the carry // for later. unimplemented!() } // **Exercise 08.2**: Handle the final `carry`, and return the sum. unimplemented!() } } // ## Traits and reference types // Writing this out becomes a bit tedious, because trait implementations (unlike functions) require // full explicit annotation of lifetimes. Make sure you understand exactly what the following // definition says. Notice that we can implement a trait for a reference type! impl<'a, 'b> ops::Add<&'a BigInt> for &'b BigInt { type Output = BigInt; fn add(self, rhs: &'a BigInt) -> Self::Output { // **Exercise 08.3**: Implement this function. unimplemented!() } } // **Exercise 08.4**: Implement the two missing combinations of arguments for `Add`. You should not // have to duplicate the implementation. // ## Modules // Rust calls a bunch of definitions that are grouped together a *module*. You can put the tests in // a submodule as follows. #[cfg(test)] mod tests { use part05::BigInt; /*#[test]*/ fn test_add() { let b1 = BigInt::new(1 << 32); let b2 = BigInt::from_vec(vec![0, 1]); assert_eq!(&b1 + &b2, BigInt::from_vec(vec![1 << 32, 1])); // **Exercise 08.5**: Add some more cases to this test. } } // **Exercise 08.6**: Write a subtraction function, and testcases for it. Decide for yourself how // you want to handle negative results. For example, you may want to return an `Option`, to panic, // or to return `0`.